Generation and Reactions of Bis(arylmethylene)propanethione

Shinichi MOTOKI, * Yasuhiro TERAUCHI, and Shunichi KAMETANI †

Department of Chemistry, Faculty of Science,

Science University of Tokyo, Kagurazaka, Shinjuku-ku, Tokyo 162

The reaction of bis(arylmethylene)propanone and P_4S_{10} gave 3,8-bis(2-arylvinyl)-5,6-diaryl-2,9-dithia-1-phosphabicyclo[4.3.0]-nona-3,7-diene 1-sulfide. Upon heating, the sulfide generated the title compound which was trapped by various dienophiles as [4+2]-cycloadducts.

 α , β -Unsaturated ketones react with Lawesson's Reagent (L.R.) or tetraphosphorus decasulfide (P₄S₁₀) to give the dimer ($\underline{2}$) of corresponding thicketones ($\underline{1}$), 1 , 2) whereas, the ketones give phosphorus-containing compounds ($\underline{3}$) by treatment with large amount of P₄S₁₀ in the presence of triethylamine. 3 , 4) Upon heating $\underline{2}$ or $\underline{3}$, α , β -unsaturated thicketone monomers $\underline{1}$ are generated and react as heterodienes with a variety of dienophiles to give [4+2]cycloadducts. 3 , 4)

Ar'
$$Ar'$$
 Ar'
 Ar'

In the present paper, we wish to report the generation and reactions of more highly unsaturated thicketone, bis(arylmethylene)propanethione ($\frac{5}{2}$).

[†]Present address: Research Laboratories, Pharmaceuticals Groups, Nippon Kayaku Co., Ltd., Kita-ku, Tokyo 115.

718 Chemistry Letters, 1988

The reaction of bis(arylmethylene)propanone ($\underline{4}$) and L.R. gave the product $\underline{6}$. Although this was the cycloadduct of $\underline{4}$ and $\underline{5}$, it was stable and did not generate $\underline{5}$ on heating.

On the other hand, 3,8-bis(2-arylvinyl)-5,6-diaryl-2,9-dithia-1-phospha-bicyclo[4.3.0]nona-3,7-diene 1-sulfide (7) was obtained by use of a large excess of P_4S_{10} in the presence of triethylamine as follows: A suspension of 4a (2.62 g), P_4S_{10} (3 g), and NEt₃ (6 ml) in CS₂ (80 ml) was refluxed for 1 h. The reaction mixture was filtered and the filtrate was evaporated. The residue was chromatographed on Wakogel C-200 by eluting with benzene-hexane (1:2). The solvent was evaporated and the residue was recrystallized from hexane to give pale yellow crystals of 7a. The results are shown in Table 1.

Table 1. Synthesis of 3,8-bis(2-arylvinyl)-5,6-diaryl-2,9-dithia-1-phospha-bicyclo[4.3.0]nona-3,7-diene 1-sulfide 7

	Ar	Reaction	Yield	Mpa)	MS	
		time /h	8	°C	thione	thiaphosphole
a	p-Tol.	1	56	196-8	278(7)	308(100)
b	Ph	4	7	166-8	250(5)	280(100)
С	$p\text{-ClC}_6\text{H}_4$	3	23	172-5	318(8)	348(100)

a) All the products decomposed at the melting point.

$$\begin{array}{c}
0 \\
Ar
\end{array}
\qquad Ar
\end{array}
\qquad Ar$$

$$\begin{array}{c}
Ar \\
Ar
\end{array}
\qquad Ar$$

$$Ar$$

It is considered that $\underline{7}$ was formed by the cycloaddition of thicketone $\underline{5}$ and thiaphosphole $\underline{8}$ as in the case of the formation of $\underline{3}.4)$

The structure of $\underline{7}$ was determined by the elemental analysis, the mass spectral fragmentation pattern, and the NMR spectral data (Table 2). The mass spectrum exhibited fragments of thioketone $\underline{5}$ and of thiaphosphole ($\underline{8}$). The 100 MHz 1 H-NMR spectrum showed three signals of protons at 4-, 5-, and 7-positions with hydrogen-phosphorus coupling.

In the ¹³C-NMR spectrum, two signals of saturated carbon atoms at 5- and 6- positions also showed carbon-phosphorus coupling. Signals of the other unsaturated hydrogen or carbon atoms could not be assigned.

Table 2. $^{1}\text{H-}$ and $^{13}\text{C-NMR}$ Spectral data of the product 7

	H(4)		H(5)		H(7)		C(5)		C(6)			
	δ	J _{HP}	J _{HH}	δ	J _{HP}	J _{HH}	δ	J _{HP}	δ	J _{CP}	δ	J _{CP}
a	6.86	5.5	6	4.98	16	6	6.08	42	55.55	2.44	76.07	43.95
b	6.88	5.5	6	5.04	16	6	6.14	42	56.19	2.44	75.64	42.72
c	6.88	5.5	6	4.95	16	6	6.03	42	55.71	2.44	75.52	42.73

As expected from the mass spectral fragment, $\underline{5}$ was generated by thermolysis of $\underline{7}$ and trapped by 2-norbornene, dimethyl acetylenedicarboxylate (DMAD), diethyl azodicarboxylate (DAD) and acrylonitrile as [4+2]cycloadducts $\underline{9},\underline{10}$, $\underline{11}$, and $\underline{12}$ respectively. $\underline{5-7}$ To our knowledge, this is the first example of generation of α , β , α' , β' -unsaturated thicketones.

Another component 8 could be trapped only by norbornene.

Ar
$$p-To1$$
 $p-To1$ p

p-Tol

12

Table 3. The reaction of 5 with dienophiles

	Reaction time/min ^{a)}	Yield %	
<u>9a</u>	120	77	colorless oil
<u>9b</u>	120	70	mp: 113-115 °C
<u>10</u>	30	78	orange oil
11 12 ^b)	10	77	yellow oil
<u>12</u> b)	30	17	mp: 179-182 °C

- a) All the reaction was carried out in refluxing benzene.
- b) Formation of the regioisomer could not be confirmed.

720 Chemistry Letters, 1988

It seems to be of interest that the diene moiety in the adducts 9-12 would be capable of undergoing successive cycloaddition reaction.

So, it is expected that the unsaturated thicketones $\underline{5}$ are available heterodienes for "diene-transmissive Diels-Alder reaction".

References

- 1) T. Karakasa and S. Motoki, J. Org. Chem., 43, 4147 (1978).
- 2) S. Kametani, H. Ohmura, H. Tanaka, and S. Motoki, Chem. Lett., 1982, 793.
- 3) H. Yamaguchi, S. Kametani, T. Karakasa, T. Saito, and S. Motoki, Tetrahedron Lett., 1982, 1263.
- 4) H. Tanaka, S. Kametani, T. Saito, and S. Motoki, Bull. Chem. Soc. Jpn., <u>58</u>, 667 (1985).
- 5) All adducts were fully characterized by spectral and analytical data. ($^{\delta}/$ Hz) 9a: 1 H-NMR (CDCl₃) 1.03-2.40(9H,m), 2.03(3H,s), 2.34(3H,s), 3.02-3.20(2H,m), 6.20(1H,d,J=4.0), 6.60-6.85(2H,m), 7.02-7.32(8H,m); 13 C-NMR (CDCl₃) 21.06(q), 21.24(q), 29.19(t), 29.89(t), 34.05(t), 41.30(d), 43.76(d), 48.62(d), 50.79(d), 58.68(d). 9b: 1H-NMR (CDCl₃) 1.00-2.30(9H,m), 3.01-3.22(2H,m), 6.21(1H,d, J=4.0), 6.62-7.02(2H,m), 7.08-7.40(10H,m); $^{13}C-NMR$ (CDCl₃) 29.14(t), 29.82(t), 34.01(t), 41.23(d), 43.66(d), 49.02(d), 50.73(d), 58.62(d). 10: ¹H-NMR (CDCl₃) 2.27(6H,S), 3.61(3H,S), 3.82(3H,S), 4.72(1H,d,J=6.0), 5.96(1H,d,J=6.0), 6.67 (2H,s), 7.02-7.28(8H,m); $^{13}C-NMR$ (CDCl₃) 21.06(q), 21.18(q), 52.30(q), 53.06(q), 165.15(s), 165.97(s). $11: {}^{1}H-NMR$ (CDCl₃) 0.81(3H,t,J=7.0), 1.29(3H,t,J=7.0)J=7.0), 2.32(3H,s), 2.33(3H,s), 3.81(2H,q,J=7.0), 4.27(2H,q,J=7.0), 5.96(2H,S), 6.54(1H,d,J=16.5), 6.76(1H,d,J=16.5), 7.04-7.33(8H,m); 13C-NMR (CDCl₃) 13.79(q), 14.57(q), 21.10(q), 21.30(q), 63.02(t), 63.46(t), 154.64(s). 12: ¹H-NMR (CDCl₃) 2.33(6H,s), 3.08(2H,d,J=6.0), 3.22-3.42(1H,m), 3.85(1H,dd,J=5.0, 5.0), 5.90(1H,d,J=5.0), 6.72(2H,s), 7.04-7.33(8H,m); 13 C-NMR (CDCl₃) 21.10(q), 21.25 (q), 25.54(t), 32.51(d), 41.96(d), 118.72(s).
- 6) In the ¹³C-NMR spectra of <u>9a</u> and <u>9b</u>, the C-7 resonances are shifted upfield 4.02 and 4.06 ppm respectively in comparison with those of norbornane (=38.07). This indicates that 9a and 9b have exo configuration.
- 7) The cis-trans relationship between tolyl and cyano group in $\underline{12}$ could not be determined by the NMR spectra.
- 8) O. Tsuge, S. Kanemasa, E. Wada, and H. Sakoh, Yuki Gosei Kagaku Kyokai Shi, 44, 756 (1986).

(Received January 14, 1988)